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The objective of this research was to develop a method to confirm the geographical authenticity of
Idaho-labeled potatoes as Idaho-grown potatoes. Elemental analysis (K, Mg, Ca, Sr, Ba, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Mo, S, Cd, Pb, and P) of potato samples was performed using ICPAES. Six
hundred eight potato samples were collected from known geographic growing sites in the U.S. and
Canada. An exhaustive computational evaluation of the 608 × 18 data sets was carried out using
statistical (PCA, CDA, discriminant function analysis, and k-nearest neighbors) and neural network
techniques. The neural network classification of the samples into two geographic regions (defined
as Idaho and non-Idaho) using a bagging technique had the highest percentage of correct
classifications, with a nearly 100% degree of accuracy. We report the development of a method
combining elemental analysis and neural network classification that may be widely applied to the
determination of the geographical origin of unprocessed, fresh commodities.
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Research on the determination of the geographic
origin of commodities and food products is becoming an
increasingly dynamic area. Financial incentives con-
tinue to drive retailers/resellers to misidentify the
geographic origin of commodities and food products. The
determination of the geographic origin is important for
enforcement options for the food industry, protection of
the consumer from overpayment and deception, and
manufacturers using raw material that is variable
(Desage et al., 1991; Flurur and Wolnik, 1994; Hernán-
dez and Rutledge, 1994a,b). The determination of the
geographic origin through chemical analysis coupled
with sophisticated data classifying techniques is timely.
Although recently publications in this area have begun
to develop, geographic classification has focused on
processed foods, most especially wines and to a much
lesser extent drugs of abuse, cocoa, coffee, and olive oil.
Despite so many recent publications, as far as we know,
geographic classification has never been applied directly
to an unprocessed, fresh commodity using neural net-
works. Here we present a method for the determination
of the geographic origin for potatoes from 2 different
sites (identified as Idaho or non-Idaho) based on 2
growing seasons and representing a total of 608 × 18
data set.

Over two-thirds of all the research literature on the
geographic origin of commodities involves the analysis
of vitamins or other organic molecules (amino acids,
triglycerides, etc.). Significant success (70-90% correct
classification) has been reported using vitamin and/or

amino acid assays to determine the geographic origin
(Aires-De-Sousa, 1996; Ferland and Sadowski, 1992;
Hulshof et al., 1997; Parcerisa et al., 1993, 1994, 1995);
however, a shortcoming of using vitamins (or other
organic compounds) is their susceptibility to degradation
(including enzymatic changes) from the time of harvest
through storage to the time of analysis. Storage condi-
tions may be especially important for some vitamin
assays; for example, vitamin E is light-sensitive, and
changes in vitamin E content during storage have been
reported (Lavedrine et al., 1997). It is important,
therefore, if one wants to develop a technique that will
ultimately be used to determine the geographic origin
of unknown samples, that effects from storage condi-
tions be minimized. This is primarily because storage
conditions either will not be known or will not be
optimized for the analysis. Storage condition variability
can and will compromise the analytical classifying
technique. Therefore, a method that is robust and
independent of variations from storage conditions is
most desirable. The use of minerals and trace elements
is therefore powerful since trace elements are signifi-
cantly more stable in the commodity versus vitamins
or some other types of organic compounds.

It is recognized that the mineral and trace metal
compositions of fruits and vegetables are a distorted
reflection of the trace mineral composition of the soil
and environment in which the plant grows. The soil-
plant system is highly specific for different elements,
plant species, and environmental conditions. Under
most conditions, a trace element present in the vegetable/
fruit must have existed in the rooting zone of the plant,
at least in a slightly soluble form. A trace element(s)
must also pass through at least one cellular membrane
in its movement from soil to plant. The selectivity of
these processes of mineral accumulation within the
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vegetable varies with different trace elements, with
different plants, and the unique environment in which
the commodity is grown.

The determination of the geographic origin of wines
has been an active area of research for some years
(Aires-De-Sousa, 1996; Armanino et al., 1990; Etievant
et al., 1988; Latorre et al., 1994; Vanderschee et al.,
1989). Most of these studies involve the chemical
determination of organic molecules, most commonly,
some combination of amino acids. Accuracy rates of
prediction fall in the 73-91% range (Aires-De-Sousa,
1996; Armanino et al., 1990; Etievant et al., 1988;
Latorre et al., 1994; Vanderschee et al., 1989). An
excellent study by Day et al. (1995) combined the
analyses of 2H NMR with multiple elemental and
isotopic ratio determinations; here, the technique clas-
sified wine samples with g99% accuracy. This approach,
however, requires the use of several instruments in-
cluding SNIF-NMR, elemental analyzer-IRMS (iso-
tope ratio mass spectrometry), FAAS (flame atomic
absorption spectrometry), ETAAS (electrothermal atomic
absorption spectrometry), and ICPAES (inductively
coupled plasma atomic emission spectrometry). In ad-
dition, sophisticated techniques are necessary for the
determination of the five isotopic ratios used. Many of
the studies are a survey in nature (less than 30
samples), and therefore, general conclusions concerning
the effectiveness of these techniques should be prudent.

The purpose of this study is to differentiate between
potatoes grown in Idaho from the other potato-growing
regions in North America. In the 1990s, Idaho became
the number one potato producer for the U.S., growing
nearly 30% of the nation’s crop (Idaho Agricultural
Statistics Service, 1992). Idaho produces approximately
13.8 billion pounds (U.S. units) of potatoes annually
(Idaho Agricultural Statistics Service, 1992). In addition
to being the production leader, Idaho is also the price
leader. On average, from 1981 to 1990, retail prices for
Idaho Russet potatoes were 2.3 times higher per hun-
dred weight (cwt) versus Northeastern white potatoes
(Idaho Agricultural Statistics Service, 1992). This con-
sistent trend of price differential is largely the result of
60 years of successful advertising, promotion, and
quality control. Quality control of potatoes is based on
taste, solids, texture, and consistency. The Idaho potato
is especially high in solids (21%), as compared to other
growing regions, creating the “fluffy”/dry consistency
recognized by consumers. The potato industry in Idaho
represented over 2.5 billion dollars to the state’s economy,
representing over 15% of Idaho’s gross income (U.S.
Department of Commerce, 1992). Protecting Idaho’s
market share, reputation, and consumer confidence to
pay a premium for Idaho potatoes is meaningful to the
industry and the state’s economy. Unscrupulous resell-
ers/retailers misidentifying potatoes from Idaho cost
Idaho growers both in the short and long term as well
as deceiving the consumer. Further lasting effects
include jeopardizing consumer confidence in the quality
of Idaho potatoes (if they have been unknowingly
switched with lower quality potatoes) and affecting the
consumers’ willingness to pay premium prices for Idaho
potatoes. Therefore, developing a method that can
identify the origin of potatoes is important to protect
the potato industry as well as the economy of Idaho.
We report the development of a method capable of
determining the geographical origin of fresh potatoes
with nearly 100% degree of accuracy, using neural

network classification of the concentrations of 14 ele-
ments in potatoes sampled from 2 seasons.

METHOD

Reagents. The source of chemicals and reference materials
was as follows: concentrated, nitric acid trace metal analysis
grade (J. T. Baker, St. Louis, MO); elemental stock standard
solutions (J. T. Baker, St. Louis, MO); reference materials,
NIST 1575 pine needles, NIST oyster tissue 1566a, NIST rice
flour 1568a, NIST 1577b bovine liver, NIST 8433 corn bran
(National Institute of Standards and Technology, Gaithers-
burg, MD), NRC TORT-2 lobster hepatopancreas (National
Research Council Canada, Institute National Measurements
Standards, Ottawa, Ontario, Canada).

Apparatus. The inductively coupled argon plasma atomic
emission spectrometer (ICPAES) was equipped and set up as
follows: model Leeman 1000 ICPAES, power 1.1 kW, coolant
16 LPM (liters/min), nebulizer 41 psi, auxiliary flow 0.20,
pump rate 1.0 mL/min, scan intergration time 0.25 s, Mn1
peaking wavelength, acid flexible tubing 0.030 mm ID (internal
diameter), wavelengths and background corrections previously
reported (Anderson, 1996). The temperature controller/digester
used was a digestion system 40, 1016 digester, and Autostep
1012 controller (Tecator, Sweden), fitted with an aluminum
adapter plate 3 mm thick with 40-17-mm holes on top overlaid
on the heater block.

Sampling, Preparation, and Analysis. To ensure that
we used only authentic samples with precisely known origin,
samples where gathered by the Idaho Potato Commission (IPC)
or one of their delegates directly from farms or producers’
storage units. Samples were shipped within days of collection
with chain-of-custody documentation to the University of Idaho
Analytical Sciences Laboratory. Samples were stored under
controlled access at 4 °C until analysis, typically within 2
weeks.

Potatoes were collected from most major fresh-market
geographic locations in North America (U.S. and Canada),
based primarily on the number of acres in fresh potato
production. Idaho potatoes are grown primarily in the Snake
River Plain, representing about 400 000 acres in current potato
production. Within this region, 342 samples were collected
from widely distributed locations within Idaho. Non-Idaho
potatoes include samples taken from the following geographic
locations: Colorado, Washington, Wisconsin, Maine, Michigan,
and Canada (Prince Edward Island and New Brunswick). Two
hundred sixty-six non-Idaho samples were collected. For the
purposes of this paper, all of these regions are combined into
one category called non-Idaho.

Each potato was hand-rinsed under a stream of tap water
for 20-30 s. Dirt was removed by gently rubbing by hand
under the water stream. After rinsing, the potatoes were
shaken to remove any excess water, gently blotted with a paper
towel, and placed in a lab-mat covered tub to air-dry prior to
processing (1-2 h). A ca. 1.0-g cross-sectional slice of whole
tuber was taken, see Figure 1, and the sample was digested
with 3.0 mL of nitric acid (trace metal grade) in a 10-mL
graduated Kimax culture tube on a programmed heating block.
Similarly, a ca. 1-g sample of pulp only was taken from each
potato as a cross-sectional slice, and a 1-3-mm-thick slice of
peel was taken. These three samples represented the whole
tuber, pulp only, and peel only subsamples, respectively.

The samples were allowed to react for ca. 4-8 h in a hood
at ambient temperature. Then the samples were digested using
a heating block (or a programmable digester may be used).
The samples were heated to 180 °C for 3-4 h. Digestion was
confirmed complete when no nitrous oxide gases were evolved
(i.e., orange gas production). Samples were diluted with type
1 water (18 Ω‚cm) and mixed thoroughly using a vortexer.
Analysis was by ICPAES.

The percent moisture for each individual sample was
determined in duplicate. The percent moisture method used
was a modification of AOAC Method 984.25 (Association of
Official Analytical Chemists, 1990). The samples are placed
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in a convection oven at 105 °C for 5 days. The mineral and
trace element concentrations were standardized to a dry
weight, based on the moisture content.

Quality Control. Each analytical batch contained a mini-
mum of 25% quality control samples, including check stan-
dards, duplicates, spikes, and standard reference materials
(SRMs). The percent recovery and percent standard deviation
for SRM are given in Table 1. During the course of the study,
over 360 SRM samples were analyzed; SRMs were dominantly
plant matrixes where available; in all cases, the SRMs
represented analyte concentration ranges typically found in
plant tissues. The percent recovery ranged from 86 to 136%.
The percent standard deviation ranged from 2 to 39%. Typical
percent standard deviation (% SD) was <10%, although
analytes close to method detection limits (MDLs) had higher
% SDs. Spike recoveries and check standards where typically
within (10% of their true value.

Computational Analysis. The data were analyzed in an
effort to classify potato samples as having originated from
Idaho or from outside Idaho based on the trace element profile
of each sample. Basic statistical analyses and several pattern

recognition methods were applied to the data. Neural network
methods were applied utilizing software (NeroShell for Mi-
crosoft Windows, Release 4.6) supplied by Ward Systems
Group Inc. (Frederick, MD). Neural network analysis included
variants of feed-forward back-propagation architectures and
included combining classifiers in a “bagging” strategy. Basic
statistical analyses and pattern recognition techniques, ex-
cluding neural network, were performed utilizing the SAS
System for Windows analysis package (Release 6.11, SAS
Institute Inc., Cary, NC). Descriptive statistics included the
following: Student t test, assessment of normality of the data
distribution, principal component analyses, canonical discrimi-
nant analysis, discriminate function analyses, nonparametric
k-nearest-neighbor analyses. The data set was standardized
to account for differing variable scales by subtracting from each
entry its associated variable mean and then dividing by the
variable standard deviation. The standardized data corre-
sponding to each variable thus has a mean equal to zero and
standard deviation equal to one.

Descriptive Statistics. Descriptive statistics (the mean,
standard deviation, minimum and maximum values) for each
element in each group were determined (SAS). The TTEST
procedure was used to compute a t statistic for testing the
hypothesis that the means of the elemental concentrations of
the two groups of potatoes are equal. The UNIVARIATE
procedure was used to test for normality using the Shapiro-
Wilk statistic and data distribution plots. Small values of W
lead to the rejection of the null hypothesis.

Principal Component Analysis. The principal component
analysis (PCA) generates principal components that are linear
combinations of the original variables. The first principal
component (PC) describes the maximum possible variation
that can be projected onto one dimension; the second PC
captures the second most and so on. The principal components
are orthogonal in the original space of variables, and the
number of principal components can equal the number of
original variables. Analyzing the data with respect to principal
components can thus sometimes effectively reduce the number
of variables, especially if a large percentage of the total
variation is described by a few principal components. One- or
two-dimensional plots of data with respect to selected principal
components can sometimes provide visual insight into the
data, offering a visual description of group differences or
clustering, and outliers. PCA has been applied to geographical
classification applications of various foods including processed
orange juice (Nikdel et al., 1988), wine (Latorre et al., 1994;
Day et al., 1995), honey (Sanz et al., 1995), and cocoa
(Hernández and Rutledge, 1994a,b). PCA was applied to our
data using the PRINCOMP procedure, and the details of the
results appear under Results and Discussion.

Canonical Discriminant Analysis. Canonical discriminant
analysis (CDA) generates canonical variables, which are linear
combinations of the original variables, that describe the
variation between prespecified classes in a manner analogous
to the way in which PCA summarizes the total variation of
the data. Like PCA, CDA can be used to effectively reduce the
number of variables and is particularly useful for producing
one- or two-dimensional visualizations of the data since the
“views” optimize the between-class differences. The default
number of canonical variables generated is the minimum of
the number of classes minus one and the number of original
variables. Different views of our data were obtained by defining
the number of classes to be two (Idaho versus non-Idaho). CDA
has been applied to data for the purpose of geographical
classification of wine (Day et al., 1995). The SAS procedure
used for our analysis was the CANDISC procedure, and the
results are discussed under Results and Discussion.

Discriminant Function Analysis. The DISCRIM procedure
was used for both parametric and nonparametric discriminant
function analyses. The parametric procedure determines a
discriminant function of classification criterion by a measure
of the generalized squared distance (Rao, 1973). This procedure
assumes a multivariate normal distribution. Selection of
variables to be included is discussed under Results and
Discussion. In this case, the classification criterion was

Figure 1. Graphical representation of the sampling technique
developed for subsampling the potato.

Table 1. Recovery and Standard Deviations of Seven
Different Standard Reference Materials Used during the
Studya

% recovery

element
oyster
tissueb

pine
needlec

rice
flourd lobstere

corn
branf alfalfag

bovine
liverh

Ba NA NA NA NA 96.1 NA NA
Ca 101.4 105.3 112.1 NA 106.1 99.2 113.2
Cd 115 NA NA 116.1 NA NA 99.3
Co BDL NA NA 112.3 NA NA NA
Cr NA 102.8 NA NA NA 113.5 NA
Cu 102.8 115.0 112.8 95.0 115.0 104.4 106.9
Fe 95.1 86.2 89.5 94.9 92.1 97.5 108.9
K 102.7 105.1 104.7 NA 107.6 109.4 105.7
Mg 103.6 NA 97.1 NA 107.8 96.4 116.4
Mn BDL 102.3 99.7 84.7 85.0 NA 85.7
Mo NA Na 136.4 114.4 NA NA 116.2
Ni 123.9 NA NA 101.6 NA NA NA
P 103.4 108.9 112.3 NA 103.9 104.5 120.5
Pb NA 116.4 NA NA NA NA NA
S 104.0 NA 104.0 NA 102.3 108.2 106.6
V 123.5 NA NA 103.7 NA NA NA
Zn 105.4 NA 108.3 105.3 104.0 104.5 107.6

a NA ) certified value not available, BDL ) below detection
limit. % SD ) percent standard deviation; reference values not
available for strontium. b n ) 72, NIST SRM 1566a oyster tissue,
% SD ranged from 7.9 to 9.8%, Ni is near MDL, and % SD was
>10% c n ) 95, NIST SRM 1575 pine needles, % SD ranged from
8 to 22%. d n ) 90, NIST SRM 1568a rice flour, % SD ranged from
7 to 22%. e n ) 8, CRC TORT2 lobster hepatopancreas, % SD
ranged from 2 to 22%, Mo is near MDL, and % SD was >10%.f n
) 84, NIST SRM 8433 corn bran, % SD ranged from 10.3 to 23%.
g n ) 12, house SRM alfalfa, % SD ranged from 3.5 to 12%. h n )
3, NIST SRM 1577a bovine liver, % SD ranged from 1 to 5%.
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based on an individual within-group covariance matrix, yield-
ing a quadratic function. There was no difference in the
classification of samples when either equal or prior prob-
abilities of the groups were used (data not shown). Two error
rates are computed. The first is an estimate of the probability
of misclassification of future samples using the discriminant
function created by the entire training set (n ) 608). The
second is the error rate incurred during a cross-validation step,
in which each sample is removed from the training set and
tested against the resultant discriminant function created by
the remaining samples (n ) 607). In all cases, error rates given
under Results and Discussion are those from the cross-
validation test. Validation of the discriminant function was
also conducted by withholding one-half of the samples from
the training set and using them as a test set against the
discriminant function created by the remaining 304 samples.
This was then repeated in reverse. The nonparametric proce-
dure used was the k-nearest-neighbor method, where k ) 10.
As no assumption is made in this procedure regarding the
nature of the data set, all variables were included.

Neural Network Analysis. Feed-forward back-propagation
neural network methods were also applied to the data in an
effort to classify the samples by geographic origin as Idaho or
non-Idaho samples. To prevent overfitting or overtraining, an
early stopping strategy was employed to enhance the ability
of the networks to generalize well (perform well on new data).
The data were divided into two disjoint subsets: a training
set and a test set. Networks were trained using half of the
data (training set). During the training process, the remaining
half of the data (test set) was periodically presented to the
networks for classification. The final values of the network
parameters were those corresponding to optimum test set
performance. Further generalization enhancements are pos-
sible by employing a bootstrap aggregation (bagging) strategy
(Breiman, 1996). Here multiple networks are trained using
randomly selected (sampling with replacement) training sets
corresponding to half the data. Final classification is then
determined by voting. This has the effect of reducing the high
variance inherent in neural networks, resulting in improved
generalization. The results of these strategies are discussed
under Results and Discussion.

RESULTS AND DISCUSSION

Chemical Analysis. There are several unique as-
pects to optimizing a set of chemical measurements that
can be used to determine geographic origin of fresh
commodities. This includes the determination of the
most appropriate portion of the commodity to test,
determination of factors that might mask or dominate
over subtle trends, and determination of the most
applicable set of chemical measurements to be made on
the sample of choice.

Fresh commodities may be stored for long periods
(1-9 months); during storage, fresh produce may lose
moisture. For example, in a study on walnuts and
storage influence, the authors proposed that even at 4
°C (3 months), desiccation of the walnuts occurred
(Lavedrine et al., 1997). In the case of potato tubers,
the percentage of water may vary 5-20% from the time
of harvest to the time of use (1-9 months later). The
percent moisture content will affect the relative con-
centration of trace elements (e.g., weight/weight). There-
fore, the percentage moisture must be equalized such
that it does not dominate or mask the variations of the
elemental concentrations, which are due to geographic
growing conditions of fresh commodities versus the
effects of dehydration during storage. The potato tuber
was not dried prior to subsampling due to the difficulty
in subsampling a portion that had a consistent pulp/
skin ratio (see below). Desiccation, by freeze-drying,
would be a viable option; however, this equipment was

not available to us. Therefore, the percent moisture was
determined (in duplicate) for each individual tuber. The
percent moisture was then used to determine the
elemental concentrations on a dry weight basis for each
individual tuber. In this way, the loss or variation of
water would not mask the variations that are due to
geographic growing conditions. The procedure developed
here was tested with samples over 4 months and found
that when the % moisture was compensated for, the
elemental concentrations were consistent regardless of
storage time. This method therefore is robust in its
applicability independent of storage time.

It has been reported that the elemental distribution
in a fresh commodity will be different for different parts
of the commodity (Esechie, 1992). For example, the
concentration of various elements within a potato will
be different in the skin versus the pulp. There is
evidence (Anderson, unpublished results) that some
elements may be concentrated in the potato skin relative
to the potato pulp. In addition, some elements in the
skin may be an enhanced (or distorted) reflection of
geographic conditions. However, the pulp, which rep-
resents the largest portion by weight of the commodity,
may have unique elemental distribution tendencies
relative to other portions of the commodity. Therefore,
the challenge is to analyze sample components that
maximize the effects of geographical conditions and yet
are reasonable to prepare for analytical determination.

Three sample component parts for the potato com-
modity were analyzed; skin only, pulp only, and whole
tuber. A preliminary data analysis using 70 samples
(computational modeling) was used to screen the vi-
ability of each sample component part. In addition,
practical aspects such as the reliability and consistency
that could be achieved at the bench level during sample
preparation for the chemical analysis were evaluated.
The most optimal sample component type was deter-
mined to be whole tuber. However, an important caveat
of this sample type was the importance of the ratio of
skin to pulp. It was determined that the skin-to-pulp
ratio (by weight) should be consistent between all
samples. A protocol was developed which provided a
method to subsample from the tuber that could consis-
tently represent the same pulp/skin ratio (see Figure
1).

Elemental distribution within a single commodity
component (e.g., pulp only) may vary within the com-
modity itself. For example, there is evidence that some
chemicals within a potato tuber are not evenly distrib-
uted in the given potato component (i.e., the pulp) from
the stem end to the distal end (Al-Saikhan et al., 1995).
Here we developed a protocol that isolated a consistent
potato tuber section. The center section was determined
to be the least affected by any variations that might
exist between the stem end and the distal end.

The drying of a plant tissue sample is a balancing act
between too low of a temperature over a prolonged
period that will encourage and promote biological activ-
ity and too high of a temperature over a short period
that may result in the loss of volatile analytes. We
performed a 10-day study (n ) 3) of drying times versus
temperatures. After 5 days, the percentage of moisture
at 105 °C changed by less than 0.2% on average. Lower
temperatures (<85 °C) required longer drying times
(>7-8 days), which risked biological growth, and tem-
peratures > 105 °C were determined to increase the risk
of other volatile analytes losses. The above-described
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procedure therefore was determined to be optimal for
fresh commodities by minimizing any volatilization and
producing a consistent dried weight while avoiding
biological growth.

An important attribute of this approach is that all of
the chemical data can be determined with the use of
only a single analytical instrument, ICPAES. Whereas
other geographic authenticity approaches require the
use of several instruments and sophisticated approaches
for data analysis, this technique requires only a single,
commonly, available instrument. In this approach, the
data are used directly from the ICPAES into the
computational models requiring no prior mathematical
or interpretive analyses as is often the case with other
geographic authenticity approaches.

The Idaho Snake River Plain is a unique area
composed of rich volcanic soil in an arid to semiarid
(irrigated) environment. The soils in this region are
xerolls, which are unique as compared to other potato-
producing geographic regions. The soil and environmen-
tal growing conditions clearly provide mineral and trace
element tuber uptake that is unique and provide the
necessary chemical profile difference to differentiate
between potatoes grown in Idaho versus outside Idaho.

Computational Analysis. Descriptive Univariate
Statistics. The means, standard deviations, and mini-
mum and maximum values for the elemental content
of potatoes from Idaho and non-Idaho locations are
shown in Table 2. Idaho potatoes had higher concentra-
tions of Ca, Cd, Mg, Ni, Pb, S, and Sr compared to non-
Idaho potatoes, whereas the concentrations of Ba, Cr,

Cu, Fe, Mn, and Zn were lower in Idaho compared to
non-Idaho potatoes. The concentrations of Co, K, Mo,
P, and V in the two groups were not significantly
different. Despite these differences, examination of the
minimum and maximum values illustrated that there
was not a single element that could correctly classify
the potato samples as to location, as the ranges of
concentration for each group overlapped for every ele-
ment. Therefore, multivariate classification techniques
were examined.

Tests for Normality. The concentrations of several
elements in the potato samples were very close to the
detection limit of the chemical analysis method. For the
purposes of statistical analyses, any value that was
below the detection limit was set to a value of zero. This
resulted in highly nonnormal distributions (W less than
0.8) for Co, Mo, and Pb. These variables were subse-
quently eliminated from parametric analyses (PCA and
discriminant function). Cr, Ni, and V were also some-
what nonnormal with W less than 0.9. Each of these
variables was systematically tested for contribution to
the parametric discriminant function analysis as de-
scribed below.

Principal Component Analysis. PCA demonstrates
that a small number of variables were not dominating
the total variability, as the first three principal compo-
nents accounted for only 49% of the total variability
(Table 3). Only modest visual clustering was apparent
when the data were displayed with respect to the first
two principal components. This was not surprising since
the first principal component accounts for the maximum
possible one-dimensional projection of the total variation
of the individual data points, which does not necessarily
correspond to the maximum variation between defined
classes. Better visual results were obtained using CDA
(discussed below).

Canonical Discriminant Analysis. CDA was applied
to the data using two defined classes, Idaho and non-
Idaho. Figure 2 shows a frequency chart of the data
using the first canonical variable and depicts a reason-
ably good separation of classes using only one variable.

Discriminant Function Analyses. The addition of V
(vanadium) values to the parametric discriminant func-
tion, generated with the 15 remaining elements, in-
creased the number of misclassified samples, and they
were therefore removed from the analyses. Elimination
of either Cr or Ni values reduced the number of
misclassified samples, and therefore, these variables
were included in the model. The final model included
14 elements (Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Ni, P,
S, Sr, and Zn). The error rates of the quadratic dis-
criminant function calculated using 14 element concen-
trations of 342 known Idaho potato samples and 266
known non-Idaho potato samples were 3.5 and 5.6%
respectively, resulting in 330 Idaho (97%) and 251 non-
Idaho (95%) correctly classified samples in cross-valida-
tion testing (Table 4). The data set was randomly
divided into 2 halves of 304 samples. Cross-validation
testing using only 304 samples as the calibration or

Table 2. Dry Weight Elemental Analysis (mg/kg) of Idaho
and Non-Idaho Potatoes

element location N mean SD mina max Pb

Ba Idaho 342 1.43 0.63 0 3.66 0.000
non-Idaho 266 1.78 1.72 0 7.61

Ca Idaho 342 532.7 164.0 197.1 1172.2 0.000
non-Idaho 266 357.5 184.3 100.1 1163.7

Cd Idaho 342 0.33 0.33 0 1.52 0.004
non-Idaho 263c 0.25 0.35 0 1.48

Cr Idaho 342 0.38 0.48 0 2.7 0.000
non-Idaho 266 0.73 0.63 0 2.12

Co Idaho 342 0.44 0.68 0 2.96 0.933
non-Idaho 266 0.43 0.78 0 3.28

Cu Idaho 342 4.26 1.47 0 8.54 0.000
non-Idaho 266 5.60 2.76 0 18.15

Fe Idaho 342 34.95 13.7 12.93 90.83 0.000
non-Idaho 266 40.58 17.70 11.71 131.05

K Idaho 342 20902.7 3370.7 10281.9 32770.4 0.167
non-Idaho 266 21259.6 2866.0 13587.7 31277.1

Mg Idaho 342 1204.6 190.0 766.2 2015.2 0.013
non-Idaho 266 1166.0 191.9 732.5 1858.5

Mn Idaho 342 6.85 1.74 1.61 18.69 0.000
non-Idaho 266 10.43 5.03 1.46 35.25

Mo Idaho 342 0.38 0.82 0 3.47 0.217
non-Idaho 266 0.47 0.99 0 5.07

Ni Idaho 342 1.03 1.01 0 4.35 0.011
non-Idaho 266 0.8 1.33 0 4.98

P Idaho 342 2506.4 686.8 1173.0 5135.0 0.144
non-Idaho 266 2585.0 681.7 1252.0 4424.4

Pb Idaho 342 2.09 2.68 0 10.12 0.007
non-Idaho 266 1.49 2.87 0 12.83

S Idaho 342 1675.8 322.2 1049.6 4020.5 0.000
non-Idaho 266 1562.4 310.1 919.5 2530.8

Sr Idaho 342 2.38 1.26 0 6.08 0.000
non-Idaho 266 1.59 1.81 0 9.89

V Idaho 342 1.29 1.12 0 4.32 0.106
non-Idaho 266 1.12 1.57 0 7.1

Zn Idaho 342 12.58 3.4 3.95 23.48 0.000
non-Idaho 266 17.79 4.83 6.54 58.18

a For statistical analysis, below detection limit samples were
set at a value of 0. b t statistic. c Three cadmium data results
accidentally not collected.

Table 3. Principal Component (PC) Analysis of the
Elemental Analysis of Potatoes

eigenvalue proportion cumulative

PC 1 2.701 0.1931 0.1931
PC 2 2.378 0.1698 0.3630
PC 3 1.779 0.1271 0.4901
PC 4 1.314 0.0938 0.5839
PC 5 1.043 0.0744 0.6584
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training set had error rates of 4.1 and 4.7% for known
Idaho potatoes and 4.5 and 9.3% for non-Idaho potatoes
(Table 4). When the remaining database of known
samples was used as a testing set against the 304 potato
training set, error rates were 4.7% for the Idaho
potatoes and 3.8-6.0% for the non-Idaho potatoes (Table
4). The nonparametric k-nearest-neighbor analysis us-
ing all 18 variables and all 608 samples gave low error
rates for Idaho potatoes (1.2%) but had higher error
rates for non-Idaho potatoes (8.4%).

Neural Network Analysis. Originally all 18 candidate
trace metals were considered. It was found that superior
classification results were obtained by considering only
the 14 trace metals used in the parametric discriminant
function analysis. This is most likely attributable to the
fact that for a large number of samples, the measured
quantities of the four unused trace metals were below
detection limits, resulting in artificially truncated fre-
quency distributions for these metals.

An early stopping strategy was first examined. Fifty
neural network models were generated. Each model
used 50% (304 samples) of the data for the training set
and 50% for the test set. The model architecture was
the same for each model; the difference in the models
was due to the difference in training and test sets, which

were selected randomly (as disjoint complements) for
each model. Individual model classification performance
on the known data (training and validation sets to-
gether) ranged from 92 to 98%.

To investigate a bagging strategy, a universal test set
of 46 samples was selected from the original data and
set aside. This universal test set was selected so as to
represent a typical cross section of the original data.
Fifty neural network models were then generated using
the remaining data (562 samples), which was now
considered as the “known” data set. As before, each
individual model was generated using 50% (281 ran-
domly selected samples) of the known data for training,
and the remaining complementary set was used as a
test set. Individual model performance ranged from 92
to 98% correctly classified on the known data (training
and test sets together) and 89-98% on the universal
test set. Generally the relative performances of indi-
vidual models on the known data and the universal test
set were not strongly correlated. When the 70 indepen-
dent classifiers were combined (bagged), the resulting
aggregate model correctly classified 98% of the universal
test set samples, missing only 1 out of the 50 samples.

Figure 2. CDA frequency chart using the first canonical variable. symbols: I ) Idaho, N ) all non-Idaho locations. This simplified
visual representation demonstrates the separation of Idaho versus non-Idaho; any overlap viewed in this one-dimensional
representation is not indicative of any intractable classification task; all 14 available dimensions are utilized; see text.

Table 4. Parametric Discriminant Function Analysis of the Elemental Concentrations of Potatoes

error rates for

training set test set Idaho non-Idaho

entire database, n ) 608 cross-validation 3.5% (12/342) 5.6% (15/256)
half (no. 1) of database, n ) 304 cross-validation 4.7% (8/171) 4.5% (6/133)

remaining database (n ) 304) 4.7 (8/171) 6.0% (8/133)
half (no. 2) of database, n ) 304 cross-validation 4.1% (7/171) 9.3% (11/133)

remaining database (n ) 304) 4.7% (8/171) 3.8% (5/133)
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Also, when the aggregate model was applied to the
known data set, over 99% of the samples were correctly
classified.

To infer a comparison between how well our best
neural network strategy (bagging) and the optimized
parametric discriminant function analysis would per-
form, the universal test set (46 samples) was removed
and parametric discriminate functions were generated
using the remaining data. The discriminant function
analysis correctly classified 89% of the universal test
set (41 out of 46 samples) and 95-96% of the known
data set (562 samples) in cross-validation testing.
Therefore, neural network bagging does appear to be a
worthwhile strategy, producing superior results over
single-model discriminant analysis.

Conclusion. The concentration of selected mineral
and trace elements in potatoes was used to differentiate
between potatoes grown in Idaho or outside of Idaho
(non-Idaho). The elemental determinations can be done
precisely and accurately using commonly available
automated equipment and enable the geographical
origin authentication of potatoes to be considered as a
standard procedure. The content of selected minerals
and trace elements is a reflection of the soil type and,
importantly, the environmental growing conditions. The
geographic origin of potatoes can be determined by their
chemical profile. Statistical analysis revealed groupings
between the Idaho and non-Idaho potatoes; however,
simple inspection of elemental concentrations cannot be
used to differentiate the growing origin. Use of neural
network models and discriminate function analysis both
successfully classified potatoes relative to their origin;
however, higher rates of correct classifications (98-99%)
were obtained with neural networks using a bagging
strategy. The nature of some potato varieties modifies
slightly the mineral and trace element profiles. The
nature of seasonal and environmental conditions may
also slightly modify the mineral and trace element
profiles. Here we included two seasons of potatoes and
found that seasonal variation did not compromise the
model’s classification success. Work is in progress to
further substantiate the effects of seasonal and potato
variety influences. As well, further classification break-
down of subregions is currently underway in our labora-
tory.

ACKNOWLEDGMENT

We thank Dr. Seifollah Nikdel, FDOC, and Bill Price,
University of Idaho, for helpful discussions.

LITERATURE CITED

Aires-De-Sousa, J. Verifying wine origin: a neural network
approach. Am. J. Enol. Vitic. 1996, 47, 410-414.

Al-Saikhan, J.; Howard, L. R.; Miller, J. C. Antioxidant activity
and total phenolics in different genotypes of potato. J. Food
Sci. 1995, 60, 341-346.

Anderson, K. A. Micro-digestion and ICP-AES analysis for the
determination of macro and micro elements in plant tissues.
At. Spectrosc. 1996, 1/2, 30-33.

Armanino, C.; Fornia, M.; Castino, M.; Piracci, A.; Ubigli, M.
Chemical investigation of four red wines from a single
cultivar grown in the Piedmont region. Analyst 1990, 115,
907-910.

Association of Official Analytical Chemists. AOAC Official
Methods of Analysis of AOAC International; Association of
Official Analytical Chemists: Washington, DC, 1990.

Breiman, L. Bagging Predictors. Machine Learning 1996, 24,
123-140.

Day, M.; Zhang, B.; Martin, G. Determination of the geo-
graphical origin of wine using joint analysis or elemental
and isotopic composition. II. Differentiation of the principal
production zones in France for the 1990 vintage. J. Sci. Food
Agric. 1995, 67, 113-123.

Desage, M.; Guilluy, R.; Brazier, J.; Chaudron, H.; Girard, J.;
Cherpin, H.; Jumeau, J. Gas chromatography with mass
spectrometry or isotope-ratio mass spectrometry in studying
the geographical origin of heroin. Anal. Chem. Acta 1991,
247, 249-254.

Esechie, H. Distribution of chemical constituents in the plant
parts of six tropical-origin forage grasses at early anthesis.
J. Sci. Food Agric. 1992, 58, 435-438.

Etievant, P.; Schlich, P.; Bouvier, J. C.; Symonds, P.; Betrand,
A. Varietal and geographic classification of French red wines
in terms of elements, amino acids and aromatic alcohols. J.
Sci. Food Agric. 1988, 45, 25-51.

Ferland, G.; Sadowski, K. Vitamin K1 (phylloquinone) content
of green vegetables: effects of plant maturation and geo-
graphical growth location. J. Agric. Food Chem. 1992, 40,
1874-1877.

Flurur, C.; Wolnik, K. Chemical profiling of pharmaceuticals
by capillary electrophoresis in the determination of drug
origin. J. Chromatogr. A 1994, 674, 153-163.

Hernández, C.; Rutledge, D. Characterization of coca masses:
low resolution pulse NMR study of the effect of geographical
origin and roasting on fluidification. Food Chem. 1994a, 49,
83-93.

Hernández, C. V.; Rutledge, D. N. Multivariate statistical
analysis of gas chromatograms to differentiate cocoa masses
by geographical origin and roasting conditions. Analyst
1994b, 119, 1171-1176.

Hulshof, P.; Xu, C.; van de Bovenkamp, P.; Muhilal; West, C.
Application of a validated method for determination of
provitamin A carotenoids in Indonesian foods of different
maturity and origin. J. Agric. Food Chem. 1997, 45, 1174-
1179.

Idaho Agricultural Statistics Service. Idaho Agricultural Sta-
tistics. 1992.

Latorre, M. J.; Garcı́a-Jares, C.; Mèdina, B.; Herrero, C.
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